PHLIPS

Read-Proof Hardware from Protective Coatings

CHES 2006, Tokyo-Yokohama

Pim Tuyls G.J. Schrijen, B. Skoric, J. van Geloven, N.Verhaegh, R. Wolters

Philips Research Eindhoven The Netherlands Pim.tuyls@philips.com

PHLIPS

Read-Proof Hardware from Coating PUFs

CHES 2006, Tokyo-Yokohama

Pim Tuyls G.J. Schrijen, B. Skoric, J. van Geloven, N.Verhaegh, R. Wolters

Philips Research Eindhoven The Netherlands Pim.tuyls@philips.com

Contents

- Limitations of the Black-Box Model
- Brief Overview of Physical Attacks
- Security in a Physical World
- Methods and Requirements
- Components
 - Coating PUFs
 - Fuzzy Extractors/Helper data
- Secure Key Storage Device

PHILIPS Research

Limitations of the Black-Box Model

Limitations of the Black-Box Model

PHILIPS Research

Brief Overview of Physical Attacks

Brief Overview Physical Attacks

- Invasive Attacks
 - Micro Probing
 - Focused Ion Beams
 - Chemical
 - Mechanical
 - Etching
- Side Channel Attacks
 - Timing Analysis
 - Power Analysis
- Electromagnetic Radiation
- Fault Induction (light, X-ray, power glitch)
- Optical Inspection

Security in a Physical World

Big Challenge: Develop theory and practical components for security in the presence of physical leakage: **No Black-Boxes!**

Components

- 1. Read-Proof Hardware: Enemy can not read the data stored in it
- 2. Tamper-Proof Hardware: Enemy can not change the data stored in it
- 3. Self Destruction Capability

Algorithmic Tamper Proof Security can be achieved [Gennaro et al]

Goal

PHILIPS

Practical Methods

Research

Focus: Read-Proof Hardware

Read-Proof Hardware is hardware where the attacker can not read any information on the data stored in it

Practical Meaning?!

Should be resistant against:

- Invasive Physical Attacks
- Side-Channel Attacks
- Fault Attacks
- Optical Inspection

Invasive vs Non-Invasive Attacks

Invasive Physical Attacks

Definition

An *invasive* physical attack is an attack where the attacker physically breaks into the device by modifying its structure

Examples:

- Chemical etching
- Drilling a hole
- Focused Ion Beam attack

Non - Invasive Physical Attacks

Definition

An non-*invasive* physical attack is an attack where the attacker physically breaks into the device without modifying its structure

Examples:

- Optical inspection of the memory
- Side-Channel attacks (Time, EMA, DPA, ...)

Methods and Requirements

In order to protect keys against physical attacks:

1. Do not store a key in digital form in a device

2. Generate the key only when needed (extract it from a physical source on the IC)

3. Delete the key

Components

PHILIPS Research

Two components are needed:

- 1. Hardware component (Physics)
 - 1. Physical Source
- 2. Cryptographic component
 - 1. Fuzzy Extractor/Helper data algorithm

Hardware Requirements Security Requirements:

- 1. Physical Inscrutability (opaqueness)
- 2. Unclonability
 - 1. Physical Unclonability
 - 2. Mathematical Unclonability
- 3. Tamper evident: key is destroyed upon damage

Practicality Requirements:

- 1. Easy to challenge the source
- 2. Cheap and easy integratable on an IC
- 3. Excellent mechanical and chemical properties

Components: Physical Source

Physical Unclonable Function (PUF): Inherently unclonable Physical Structure (consisting of many random/uncontrollable components) satisfying:

- Easy to evaluate: Challenges-Responses
- Responses are unpredictable
- Inherently tamper evident
- Manufacturer not-reproducable
- Extract keys from measurements

Coating PUF

- An IC is covered with an opaque coating containing random particles with high ϵ_r
- Array of capacitive sensors in upper metal layer detects local coating properties.
- Inhomogeneous coating → random capacitive properties

• PUF is used as a source of secret random information which are derived from the local coating capacitances (secure key storage).

Information Content of a Coating PUF (Response)

Coating PUF [JAP06]

$$\mathsf{H} = \log\left[\frac{\sqrt{2\pi e}}{\sigma_{\mathsf{N}}}\frac{A\varepsilon_{\mathsf{0}}}{d}\sqrt{\frac{q(1-q)}{Ad/s^{\mathsf{3}}}}\frac{|\varepsilon_{1}^{-1} - \varepsilon_{2}^{-1}|}{[(1-q)\varepsilon_{1}^{-1} + q\varepsilon_{2}^{-1}]^{2}}\right]$$

 \approx 6.6 bits/sensor

Components

Components

Capacitance values of 21 ICs

Fuzzy Extractor/Helper Data Algorithm

- Information present in the PUF has to be extracted
 - Measurements (Challenges Responses)
- Measurements on Physical Systems are noisy
- Noisy values can not be used as keys in cryptography
- A Fuzzy Extractor/Helper Data Algorithm is needed

Key Extraction from PUFs: Fuzzy Extractor

Grid points represent ECC Code words

Enrollment

- Random codeword C(S) is chosen
- Response X is measured
- Helper data W is generated (difference between X and C) and stored in EEPROM
- Key K is generated and its public key P(K) is output and the Key K is destroyed

Key Reconstruction

- Y is noisy response
- Y+W=C'
- S'=DEC(C')

Security Condition

Assumption: Response X uniformly random

Components

Properties

- The parameter $\boldsymbol{\epsilon}$ can be made negligible in the security parameter

 The maximal length of a secret key is given by

I(X;Y)

where I(X;Y) is the mutual information between

Practical Key extraction requirements

- Measured Data are continuous, not discrete!
- Uniformly Distributed Keys: All possible *n*-bit keys must be equally probable.
- **Robustness**: key extraction must be reproducible, regardless of measurement noise.

Statistics

PHILIPS Research

Uniformly Distributed Keys

Quantization with equiprobable intervals

Achieving Robustness (I)

• Define helper-data *W** that shifts measurements to the center of a quantization interval.

Achieving Robustness (II)

 Assign bits to quantization intervals according to a Gray-code.

Achieving Robustness (III)

- Concatenate bits from multiple sensors to construct a key of length *n*.
- Use an Error Correcting Code (ECC) and the XOR-Fuzzy Extractor:
 Enrollment: K, W=X⊕C_K

Key Reconstruction: $Dec(Y \oplus W)$ = $Dec(Y \oplus X \oplus C_K)$ = C_K iff d(X,Y) < T

Key Extraction, helperdata scheme

Store key temporarily in Volatile Memory

Delete key afterwards

PHILIPS Research

Secure Key Storage Device

PHILIPS Research

Secure Key Storage Device

Craters: 10 μm x10 μm

10

Next: craters of 5x5 mu

Model of Key Damage

Unattacked Device: Measurement Channel: $X \rightarrow Y$ Model BSC: Error Rate: α

Attacked Device: Measurement Channel: $X \rightarrow Z$ Model BSC: Error Rate: ϵ

Fuzzy Extractor corrects αn errors

Key Damage: Experiments

PHILIPS

Research

Summary of Results

- Test ICs with 30 sensors per IC
- Deriving 3 bits per sensor \rightarrow 90 bits per IC
- Limit error correction: 4 of the 90 bits
 - Depends on the coarseness of the quantisation
- Temperature compensation
- No humidity influence

- Developed Read-Proof Hardware (Invasive Attacks)
 - Coating PUF
 - Fuzzy Extractor
- Made a demonstrator
 - Attacks can be detected
 - Key Damage is shown
- Next Steps
 - Further investigate side-channel leakages
 - Investigate the impact of smaller holes

